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normal distribution

• plays a central role in statistics: by the Central Limit Theorem, can approximate a large variety of
distributions in large sample.

f (x |µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x < ∞

and we write X ∼ N(µ, σ2).

• property: if X ∼ N(µ, σ2) then Z = X−µ
σ

∼ N(0, 1).

P(Z ≤ z) = P
(
X − µ

σ
≤ z

)
= P (X ≤ zσ + µ)

=
1√
2πσ

∫ zσ+µ

−∞
e−

(x−µ)2

2σ2 dx

=
1√
2π

∫ z

−∞
e−

t2
2 dt

defining t = x−µ
σ

.
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some properties of the normal distribution

• symmetric around µ (mean/median/mode)

• location-scale distribution

• inflection points at µ± σ

• Gaussian approximation to a binomial X ∼ Bin(25, 0.6)

P(X ≤ 13) =
13∑
x=0

(
25
x

)
0.6x0.425−x = 0.267

P
(
Z ≤ 13 − 25 × 0.6√

25 × 0.6 × 0.4

)
= P(Z ≤ −0.82) = 0.206

P
(
Z ≤ 13.5 − 25 × 0.6√

25 × 0.6 × 0.4

)
= P(Z ≤ −0.61) = 0.271
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exponential family

• pdfs/pmfs that belong to the exponential family are such that

f (x |θ) = h(x) c(θ) exp

(
d∑

i=1

wi (θ)ti (x)

)

• h(x) ≥ 0 and c(θ) ≥ 0

• h(x), t1(x), . . . , td(x) are real-valued functions only of x

• c(θ),w1(θ), . . . ,wd(θ) are real-valued functions only of θ

• examples
discrete continuous
binomial beta
negative binomial gamma
Poisson normal
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binomial exponential family

definition: f (x |θ) = h(x) c(θ) exp

(
d∑

i=1

wi (θ)ti (x)

)

• Binomial belongs to the exponential family:

f (x |p) =

(
n

x

)
px(1 − p)n−x =

(
n

x

)(
p

1 − p

)x

(1 − p)n

=

(
n

x

)
(1 − p)n exp

[
x ln

(
p

1 − p

)]
⇓

h(x) =

{ (
n
x

)
if x = 0, . . . , n

0 otherwise

c(p) = (1 − p)n

w1(p) = ln

(
p

1 − p

)
t1(x) = x
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normal exponential family

definition: f (x |θ) = h(x) c(θ) exp

(
d∑

i=1

wi (θ)ti (x)

)

• The normal distribution also belongs to the exponential family:

f (x |µ, σ2) =
1√
2π σ

exp

[
−1

2

(x − µ

σ

)2
]

=
1√
2π σ

exp

(
− µ2

2σ2

)
· exp

(
− 1

2σ2 x2 +
µ

σ2 x

)
⇓

h(x) = 1

c(µ, σ2) =
1√
2π σ

exp

(
− µ2

2σ2

)
w1(µ, σ

2) = 1/σ2 , w2(µ, σ
2) = µ/σ2

t1(x) = −x2/2 , t2(x) = x

7 / 29



moments of the exponential family

• theorem (CB 3.4.2): if X is a random variable with pdf/pmf in the exponential family, then

E

[
d∑

i=1

∂wi (θ)

∂θj
ti (X )

]
= −∂ ln c(θ)

∂θj

var

[
d∑

i=1

∂wi (θ)

∂θj
ti (X )

]
= −∂2 ln c(θ)

∂θ2
j

− E

[
d∑

i=1

∂2wi (θ)

∂θ2
j

ti (X )

]

• main advantage: life is much easier once we replace either integration or summation by
differentiation
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binomial mean

• example: binomial mean

d
dp

w1(p) =
d
dp

ln

(
p

1 − p

)
=

1
p(1 − p)

d
dp

ln c(p) =
d
dp

n ln(1 − p) = − n

1 − p

⇒ E
[

X

p(1 − p)

]
=

n

1 − p

⇒ E(X ) = np

• variance identity works in a similar manner
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moments of exponential family proof
• proof: to ensure that the pdf integrates to 1, we have that

c(θ) =

[∫ ∞

−∞
h(x) exp

(
d∑

i=1

wi (θ)ti (x)

)
dx

]−1

d

dθ
ln c(θ) =

d

dθ
ln

[∫ ∞

−∞
h(x) exp

(
d∑

i=1

wi (θ)ti (x)

)
dx

]−1

= −

[∫ ∞

−∞
h(x) exp

(
d∑

i=1

wi (θ)ti (x)

)
dx

]
·

·

[∫ ∞

−∞
h(x) exp

(
d∑

i=1

wi (θ)ti (x)

)
dx

]−2

·

· d
dθ

∫ ∞

−∞
h(x) exp

(
d∑

i=1

wi (θ)ti (x)

)
dx

= −c(θ)

∫ ∞

−∞

d

dθ

[
h(x) exp

(
d∑

i=1

wi (θ)ti (x)

)]
dx

assuming that we can exchange integration and differentiation
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moments of exponential family proof

• proof (cont’d):

= −c(θ)

∫ ∞

−∞
h(x) exp

(
d∑

i=1

wi (θ)ti (x)

)(
d∑

i=1

ti (x)
d

dθ
wi (θ)

)
dx

= −E

[
d∑

i=1

ti (x)
d

dθ
wi (θ)

]

and so E
[∑d

i=1 ti (x)
d
dθ
wi (θ)

]
= − d

dθ
ln c(θ). ■

• A similar expression holds for the variance.
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keeping track of the support. . .

• attention to the support: in general, the set of values x for which f (x |θ) > 0 cannot depend on
the parameter vector θ in an exponential family, because otherwise the pdf would not entirely
conform to the definition

• example:

f (x |θ) =
1
θ
e1− x

θ for 0 < θ < x < ∞

=
1
θ
e1− x

θ I[θ,∞](x)

this pdf is not in the exponential family because the indicator function I[θ,∞)(x) not only depends
both on x and θ, but also cannot be expressed as an exponential
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standardizing pdfs

• theorem (CB 3.5.1): let f (x) denote a pdf and let µ and σ > 0 denote any given constants, then
g(x |µ, σ) = 1

σ
f
(
x−µ
σ

)
is also a pdf

• proof: we must check whether g(x |µ, σ) is a pdf for every value of µ and σ that we may
substitute in the formula
(i) f (x) ≥ 0 for all x by definition, and hence 1

σ
f
(

x−µ
σ

)
≥ 0 as well for all values of x , µ and σ

(ii)
∫∞
−∞

1
σ
f
(

x−µ
σ

)
dx =

∫∞
−∞ f (y) dy = 1 with y = x−µ

σ
■
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location family of distributions

• definition: let f (x) denote a pdf, then the family of pdfs f (x − µ), with −∞ < µ < ∞, is called
the location family with standard pdf f (x) and with µ as location parameter

• the location parameter µ shifts the distribution either to the right (if positive) or to the left (if
negative), without altering the shape of the distribution
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members of the same location family

(µ = 0 vs µ = 2)
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exponential location family

• it is straightforward to form a location family from f (x) = e−x with x ≥ 0 by replacing x with
x − µ

f (x |µ) =

{
e−(x−µ) if x − µ ≥ 0
0 otherwise

note that µ now corresponds to a bound on the range of X and hence it is a threshold parameter
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members of the exponential location family
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introducing the scale parameter. . .

• definition: let f (x) denote a pdf, then the family of pdfs 1
σ
f (x/σ) for any σ > 0 is called the

scale family with standard pdf f (x) and scale parameter σ

• introducing the scale parameter σ will either stretch (if σ > 1) or contract (if σ < 1) the density,
while maintaining the same basic shape

• altogether now: let f (x) denote a pdf, then the family of pdfs 1
σ
f
(
x−µ
σ

)
for any −∞ < µ < ∞

and σ > 0 is called the location-scale family with standard pdf f (x), location parameter µ, and
scale parameter σ
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members of the same scale family
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representations within a location-scale family. . .

• theorem (CB 3.5.6): let f (x) denote a pdf, whereas µ denote a real number and σ any positive
real number. Then X is a random variable with pdf 1

σ
f
(
x−µ
σ

)
if and only if there exists a random

variable Z with pdf f (z) such that X = µ+ σZ

• proof: (⇐) Define g(z) = µ+ σz . Then g(·) is monotone with g−1 = x−µ
σ

and
∣∣ d
dx
g−1(x)

∣∣ = 1
σ
.

So the pdf of X is

fX (x) = fZ
(
g−1(x)

) ∣∣∣∣ ddx g−1(x)

∣∣∣∣ =
1
σ
f
(x − µ

σ

)

• proof: (⇒) Define g(x) = x−µ
σ

, so g−1(z) = σz + µ with
∣∣ d
dx
g−1(x)

∣∣ = σ. The pdf of Z is

fZ (z) = fX
(
g−1(z)

) ∣∣∣∣ ddz g−1(z)

∣∣∣∣ =
1
σ
f

(
(σz + µ)− µ

σ

)
σ = f (z)

(also, σZ + µ = σg(X ) + µ = σ
(
X−µ
σ

)
+ µ = X ). ■
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Chebychev’s inequality
• theorem (CB 3.6.1): let X denote a random variable and let g(x) be a nonnegative function, it

then follows that

P
(
g(X ) ≥ r

)
≤ 1

r
E[g(X )] for any r > 0

• proof:

E[g(X )] =

∫ ∞

−∞
g(x)fX (x) dx

≥
∫
{x : g(x)≥r}

g(x)fX (x) dx

≥ r

∫
{x : g(x)≥r}

fX (x) dx

= rP
(
g(X ) ≥ r

)
■

• very conservative as it applies to any distribution!
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Chebychev’s inequality

• application: let g(x) = (x−µ)2

σ2 , where µ = EX , σ2 = varX and r = t2.
− By the Chebychev’s inequality,

P
(
g(X ) ≥ r

)
≤

1
r
E[g(X )]

P
(
(x − µ)2

σ2 ≥ t2
)

≤
1
t2

E
[
(x − µ)2

σ2

]
=

1
t2

⇓

P (|X − µ| ≥ tσ) ≤
1
t2

• useful to get universal bounds of |X − µ|. For t = 2,

P (|X − µ| ≥ 2σ) ≤ 1
22 = .25

that is, there at least a 75% chance that a random variable is within 2σ of its mean (regardless of
the distribution of X !)
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normal probability inequality

• theorem (CB 3.6.3): if Z ∼ N(0, 1), then

P(|Z | ≥ t) ≤
√

2
π

e−t2/2

t
for all t > 0

• proof:

P(Z ≥ t) =
1√
2π

∫ ∞

t

e−x2/2 dx

≤ 1√
2π

∫ ∞

t

x

t
e−x2/2 dx given x > t > 0

=
1√
2π

e−t2/2

t
,

yielding the result as P(|Z | ≥ t) = 2P(Z ≥ t) ■

• Vast improvement over Chebychev:
√

(2/π)e−2/2 = .054
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Chebychev or Markov

• warning: there are many versions of these theorems.

• Some authors refer to the Markov inequality

P
(
X ≥ r

)
≤ 1

r
E(X ) for any r > 0

• and to the Chebychev inequality as

P
(
|X − µ| ≥ t

)
≤ 1

t2
var X for any t > 0

⇑

P
(
(X − µ)2 ≥ t2

)
≤ 1

t2
var X for any t > 0
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Stein’s lemma

• there is a wide array of identities that rely on integration by parts, of which the first is due to
Charles Stein

• theorem (CB 3.6.5): let X ∼ N(µ, σ2) and let g denote a differentiable function such that
E|g ′(X )| < ∞, then E

[
g(X )(X − µ)

]
= σ2 E[g ′(X )]
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Stein’s lemma

• proof:

E
[
g(X )(X − µ)

]
=

1√
2π

∫ ∞

−∞
g(x)(x − µ)e−

1
2 (

x−µ
σ )2 dx

• Refresher on integral by parts:
∫ b

a
u(x)v ′(x)dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x)dx .

• Using integration by parts and setting

u = g(x) ⇒ du = g ′(x) dx

dv = (x − µ)e−
1
2 (

x−µ
σ )2 dx ⇒ v = −σ2e−

1
2 (

x−µ
σ )2

in the LHS yields

=
1√
2π

[
−σ2g(x)e−

1
2 (

x−µ
σ )2

]∞
−∞

+ σ2 E[g ′(X )],

whereas E|g ′(X )| < ∞ ensures that the first term is zero. ■
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higher-order moments of a normal distribution

• Stein’s lemma is very useful to compute the higher-order moments of a normal distribution

E(X 3) = E
[
X 2(X − µ+ µ)

]
= E

[
X 2(X − µ)

]
+ µE(X 2)

= 2σ2E(X ) + µ(σ2 + µ2)

= 3µσ2 + µ3

⇒ E(Z 3) = 0 if Z = (X − µ)/σ

E(X 4) = E
[
X 3(X − µ+ µ)

]
= E

[
X 3(X − µ)

]
+ µE(X 3)

= 3σ2E(X 2) + 3µ2σ2 + µ4

= 3σ2(σ2 + µ2) + 3µ2σ2 + µ4

= 3(σ4 + 2σ2µ2 + µ2) + µ4

= 3(σ2 + µ)2 + µ4

⇒ E(Z 4) = 3 if Z = (X − µ)/σ
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Jensen’s Inequality

• theorem: (Jensen’s Inequality) Let g : R → R convex. Then g (EX ) ≤ Eg (X ).

• proof: since g is convex, there exists a linear function l : R → R such that l ≤ g and
l (EX ) = g(EX ). It follows that

Eg(X ) ≥ El(x)
= l(EX )

= g(EX )

■

28 / 29



Contents

1. Distributions

1.1 Normal distribution

1.2 Exponential family

1.3 Location-scale family

2. Inequalities and identities

3. Exercises

28 / 29



Reference:

• Casella and Berger, Ch. 3

Exercises:

• 3.1–3.3, 3.5–3.9, 3.12–3.15, 3.17, 3.20, 3.23–3.26, 3.30–3.32, 3.37–3.39.

29 / 29


	Distributions
	Inequalities and identities
	Exercises

