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normal distribution

e plays a central role in statistics: by the Central Limit Theorem, can approximate a large variety of
distributions in large sample.

f(x|u, o) ! ef(x;g)2 0o < x < 00
x|p, o = — o2 =
V2oro

and we write X ~ N(u,o?).

o property: if X ~ N(u,0?) then Z = % ~ N(0,1).

P(Z<z) = P(X_“gz)

g

= P(X<zo+up)

1 Zo+ B (X_“>2
= — e 202 dx
(o2

V2mo J -
1 z 2
= — e 2dt
V2T /_oo

defining t = =&,

3/ 20



some properties of the normal distribution

symmetric around p (mean/median/mode)

location-scale distribution

inflection points at yu + o

Gaussian approximation to a binomial

(
“(

V4

V4

IN

IN

P(X < 13)

13 -25x0.6

V25 x 0.6 x0.4

13.5-25x 0.6

v25 x 0.6 x 0.4

)
)

13

Z <2X5) 0.6%0.4%°7* = 0.267

x=0

P(Z < —0.82) = 0.206

P(Z < —0.61) = 0.271

X ~ Bin(25,0.6)
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exponential family

pdfs/pmfs that belong to the exponential family are such that
d
f(x|6) = h(x)c(0) exp <Z W,-(e)t,-(x)>
i=1

e h(x)>0and c(0) >0

o h(x), ti(x),..., td(x) are real-valued functions only of x

o c(0),wi(0),...,wq(0) are real-valued functions only of 8

e examples
discrete continuous
binomial beta
negative binomial gamma
Poisson normal
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binomial exponential family
d
definition: f(x|@) = h(x)c(0) exp (Z W,'(B)f,‘(X))

o Binomial belongs to the exponential family:

f(xlp) = <Z>px(1—p)"_x

)
- en ;2]

|
" ifx=0,...,n
h(x) = (()X) otherwise
cp) = (1-p)
— In(-P_
me) = n(2)
ti(x) = x
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normal exponential family

definition: f(x|0) = c(0) exp (i: )

e The normal distribution also belongs to the exponential family:

F(x|p, o) L o H (= “)2]

g

2
= 1 exp _L -eXp _ixz_l'_ﬂx
Voo 202 202 o2

I
h(x) = 1
c(m,0®) = ﬁ exp (—%>
Wl(/Lao—z) = 1/02 ’ Wz(/L,O'z) = /L/O—z
ti(x) = —x*/2, t(x) = x
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moments of the exponential family

e theorem (CB 3.4.2): if X is a random variable with pdf/pmf in the exponential family, then

ow;(0) __0Inc(0)
® |2 X)) = 20,
d
ow;(0) 82 0 Inc(0) 0w (0 '
"arLl a0, 5% o Z 302 ti(

e main advantage: life is much easier once we replace either integration or summation by
differentiation
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binomial mean

e example: binomial mean

e variance identity works in a similar manner
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moments of exponential family proof
e proof: to ensure that the pdf integrates to 1, we have that

|:/_Oo h(x) exp (Z W,-(9)t,-(x)> dx:|

d d > . -

40 Inc(6) 40 In [/oo (x) exp (; w;i(0)ti(x) > }
[/ h(x) exp <Z w;(0)ti(x) ) ] :

: |:/oo (x) exp (Z w;(0)ti(x) ) :|

d
30 / h(x) exp (; w;(0)ti(x) )
—c(9) /700 % [ (x) exp (Z w;(0)ti(x) ):| dx

assuming that we can exchange integration and differentiation

c(0)
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moments of exponential family proof

e proof (cont'd):

d d
— (o) / exp( W,-(e)t,-(x)> (Z t,-(x):ew,-(&)) dx

i=1

2|3 100 fyut0)

and so E [27:1 t,-(x)%w,-(@)] =—2inc(0).

o A similar expression holds for the variance.
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keeping track of the support. ..

e attention to the support: in general, the set of values x for which f(x|@) > 0 cannot depend on
the parameter vector 6 in an exponential family, because otherwise the pdf would not entirely
conform to the definition

e example:

F(6) = geFfor0<<x<oo

1 1 _x
5 el 0 /[gyoo](X)

this pdf is not in the exponential family because the indicator function /iy o.)(x) not only depends
both on x and 6, but also cannot be expressed as an exponential
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standardizing pdfs

e theorem (CB 3.5.1): let f(x) denote a pdf and let ;x and o > 0 denote any given constants, then
g(x|p,0) = L f(*) is also a pdf

e proof: we must check whether g(x|u, o) is a pdf for every value of i and o that we may
substitute in the formula

(i) f(x) > 0 for all x by definition, and hence l f (ﬂ) > 0 as well for all values of x, x and o

(i) S 2r (%5

)dx—f_ f(y)dy =1 with y = =& [ |
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location family of distributions

o definition: let f(x) denote a pdf, then the family of pdfs f(x — u), with —oo < p < oo, is called
the location family with standard pdf f(x) and with u as location parameter

e the location parameter u shifts the distribution either to the right (if positive) or to the left (if
negative), without altering the shape of the distribution
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members of the same location family

(n=0vs p=2)
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exponential location family

e it is straightforward to form a location family from f(x) = e™™ with x > 0 by replacing x with
X = pu
—(x=p)
e ifx—pu>0
f = .=
(x|12) { 0 otherwise

note that p now corresponds to a bound on the range of X and hence it is a threshold parameter
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members of the exponential location family
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introducing the scale parameter. ..

o definition: let f(x) denote a pdf, then the family of pdfs 1 f(x /o) for any o > 0 is called the
scale family with standard pdf f(x) and scale parameter o

e introducing the scale parameter o will either stretch (if o > 1) or contract (if o < 1) the density,
while maintaining the same basic shape

o altogether now: let f(x) denote a pdf, then the family of pdfs X f (*>£) for any —co < 11 < 0o

and o > 0 is called the location-scale family with standard pdf 7(x), location parameter p, and
scale parameter o
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members of the same scale family
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representations within a location-scale family. . .

o theorem (CB 3.5.6): let f(x) denote a pdf, whereas i denote a real number and o any positive
real number. Then X is a random variable with pdf £ (*>£) if and only if there exists a random
variable Z with pdf f(z) such that X = yp+ o2

o proof: (<) Define g(z) = 1+ 0z. Then g(-) is monotone with g~* = *>£ and |Lg7}(x)| = L.
So the pdf of X is

A = f (g () \—g*(x)

o proof: (=) Define g(x) = %%, so g (z) = 0z + p with | Lg *(x)| = . The pdf of Z is

B) = fe(e@) | 2o )| = 2 ()6~ p)

g

(aIso,aZ+,u:Ug(X)+,u*0( L)+ p=X). [ ]
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Chebychev’s inequality

e theorem (CB 3.6.1): let X denote a random variable and let g(x) be a nonnegative function, it
then follows that

P(g(X)>r) < %E[g(X)] forany r>0

e proof:

Blg() = [ (0 f(x) dx

> / g(x)fx(x)dx
{x:g(x)=r}
> "/ fx(x) dx
{xg(x)=r}
= rP(g(X)>r) |

e very conservative as it applies to any distribution!
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Chebychev’s inequality

e application: let g(x) = C=? \here p=EX, 0% =varX and r = t°.

o2 1

— By the Chebychev's inequality,

P(X)>r) < - Elg()
x — )2 1 x — p)? 1
p(Cose) o e[ L
¥
PIX—pl2t0) <

o useful to get universal bounds of | X — p|. For t = 2,

1
P(X —pl>20) < % = .25
that is, there at least a 75% chance that a random variable is within 20 of its mean (regardless of
the distribution of X1)
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normal probability inequality

e theorem (CB 3.6.3): if Z ~ N(0,1), then

e proof:

yielding the result as P(|Z] > t)

P(Z|2 ) < @

—t2/2

forallt >0

oo

e /2 dx

X _.2
?e X /2dX
—t2/2

given x >t >0

I
/

e

)

S ERSIEISE
3 3 3

t

2P(Z > t) ]

o Vast improvement over Chebychev: \/(2/7)e™2/2 = .054
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Chebychev or Markov

e warning: there are many versions of these theorems.
e Some authors refer to the Markov inequality

P(X>r) < %]E(X) forany r>0

e and to the Chebychev inequality as

1
P(|X — pl > t) t—zvarX forany t>0

IN = IA

1
P((X — p)? > t?) t—zvarX forany t>0
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Stein’s lemma

o there is a wide array of identities that rely on integration by parts, of which the first is due to
Charles Stein

o theorem (CB 3.6.5): let X ~ N(u,0?) and let g denote a differentiable function such that
Elg'(X)| < o, then E[g(X)(X — )] = 0> E[g'(X)]
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Stein’s lemma

e proof:

Ble0X -] = = [ g0x—me ) ax

o Refresher on integral by parts: fab u(x)v' (x)dx = [u(x)v(x)]? — fab v (x)v(x)dx.

e Using integration by parts and setting
u = g(x) = du = g'(x)dx
dv = (X—M)e_%(%&)z dx = v = —Uze_%(%&)z
in the LHS vyields

= = [-ee Y] om0

whereas E|g’(X)| < oo ensures that the first term is zero.
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higher-order moments of a normal distribution

e Stein’s lemma is very useful to compute the higher-order moments of a normal distribution

E(X?) = E[X*(X—p+p)]

= E[X*(X —p)] +pE(X?)

= 20°E(X) + p(o® + 1)

_ 3M02 +M3

= E(Z)=0 #fZ=X-p)/o
E(X*) = E[X}X—p+p)]

E[X3}(X — p)] + E(X?)
= 30%E(X?) + 3P0 + p*
_ 302(02+M2)+3M202+M4
= 30" +20%p + ) + 4t
= 3(*+p)+u
= EZY)Y=3 ifZ=X-up)/o
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Jensen’s Inequality

e theorem: (Jensen's Inequality) Let g : R — R convex. Then g (EX) < Eg (X).

e proof: since g is convex, there exists a linear function / : R — R such that / < g and
I(EX) = g(EX). It follows that

Y

Eg(X) El(x)
I(EX)

= g(EX)
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Reference:

o Casella and Berger, Ch. 3

Exercises:

e 3.1-3.3, 3.5-3.9, 3.12-3.15, 3.17, 3.20, 3.23-3.26, 3.30-3.32, 3.37-3.39.
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